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Abstract

Optimization-oriented reduced-order models should target a particular output func-

tional, span an applicable range of dynamic and parametric inputs, and respect the

underlying governing equations of the system. To achieve this goal, we present

an approach for determining a projection basis that uses a goal-oriented, model-

constrained optimization framework. The mathematical framework permits con-

sideration of general dynamical systems with general parametric variations and is

applicable to both linear and nonlinear systems. Results for a simple linear model

problem of the two-dimensional heat equation demonstrate the ability of the goal-

oriented approach to target a particular output functional of interest. Application of

the methodology to a more challenging example of a subsonic blade row governed by

the unsteady Euler flow equations shows a significant advantage of the new method

over the proper orthogonal decomposition.
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1 Introduction

Model reduction entails the systematic generation of cost-efficient represen-

tations of large-scale systems that result, for example, from discretization of

partial differential equations (PDEs). The task of determining these repre-

sentations may be posed as an optimization problem: determine the reduced

model that provides the optimal representation (with respect to some quan-

tity of interest) of the large-scale system behavior. For very large systems,

determination of the best reduced model via direct optimization has not been

pursued, due to challenges in solving the resulting optimization problem. In-

stead, several reduction methods have been developed that trade off optimality

for tractability, and these have been applied in many different settings with

considerable success, including controls, fluid dynamics, structural dynamics,

and circuit design. However, a number of open issues remain with these meth-

ods, including the reliability of reduction techniques, guarantees associated

with the quality of the reduced models, and the generation of reduced mod-
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els that are suitable for optimal design, optimal control and inverse problem

applications.

Recent advances in scalable algorithms for large-scale optimization of systems

governed by PDEs have permitted solution of problems with millions of state

and optimization variables [1,2]. The problem of determining a reduced model

can be cast in a similar model-constrained optimization framework. In partic-

ular, we consider a goal-oriented formulation in which the reduced model is

chosen to optimally represent a particular output functional. Whereas other

large-scale reduction methods, such as the proper orthogonal decomposition

(POD), are purely data-driven and do not consider the underlying equations,

our model-constrained optimization approach enforces the reduced-order gov-

erning equations as constraints. This improves on a data-driven approach by

bringing additional knowledge of the reduced-order governing equations into

the construction of the basis.

Most large-scale model reduction frameworks are based on a projection ap-

proach, which can be described in general terms as follows. Consider the gen-

eral linear, time-invariant (LTI) dynamical system

Mu̇ + Ku = f, (1)

g = Cu, (2)

with initial condition

u(0) = u0, (3)

where u(t) ∈ IRN is the system state, u̇(t) is the derivative of u(t) with respect

to time, and the vector u0 contains the specified initial state. In general, we

are interested in systems of the form (1) that result from spatial discretiza-
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tion of PDEs. In this case, the dimension of the system, N , is very large and

the matrices M ∈ IRN×N and K ∈ IRN×N result from the chosen spatial dis-

cretization method. The vector f(t) ∈ IRN defines the input to the system and

the matrix C ∈ IRQ×N defines the Q outputs of interest, which are contained

in the output vector g(t).

A reduced-order model of (1)–(3) can be derived by assuming that the state

u(t) is represented as a linear combination of m basis vectors,

û = Φα, (4)

where û(t) is the reduced model approximation of the state u(t) and m ¿ N .

The projection matrix Φ ∈ IRN×m contains as columns the basis vectors φi,

i.e., Φ = [φ1 φ2 · · · φm], and the vector α(t) ∈ IRm contains the corresponding

modal amplitudes. This yields the reduced-order model with state α(t) and

output ĝ(t)

M̂α̇ + K̂α = f̂ , (5)

ĝ = Ĉα, (6)

M̂α0 = ΦT Mu0, (7)

where M̂ = ΦT MΦ, K̂ = ΦT KΦ, f̂ = ΦT f , Ĉ = CΦ, and α0 = α(0).

Projection-based model reduction techniques seek to find a basis Φ so that the

reduced system (5)–(7) provides an accurate representation of the large-scale

system (1)–(3) over the desired range of inputs. An optimal reduced model can

be defined as one that minimizes the H-infinity norm of the difference between

the reduced and original system transfer functions; however, no polynomial-

time algorithm is known to achieve this goal. Algorithms such as optimal

Hankel model reduction [3–5] and balanced truncation [6] have been used
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widely throughout the controls community to generate suboptimal reduced

models with strong guarantees of quality. These algorithms can be carried

out in polynomial time; however, the computational requirements make them

impractical for application to large systems such as those arising from the

discretization of PDEs, for which system orders typically exceed 104.

While considerable effort has been applied in recent years towards development

of algorithms that extend balanced truncation to large-scale LTI systems [7–

9], efficient algorithms for very large systems remain a challenge. In addition,

application of balanced truncation methods to systems that are linear time-

varying or have parametric variation has been limited to small systems [10,11].

The proper orthogonal decomposition (POD) [12,13] has emerged as a popular

alternative for reduction of very large dynamical systems; however, it lacks the

quality guarantees of methods such as balanced truncation.

Optimal design, optimal control and inverse problem applications present ad-

ditional challenges for model reduction methods. In such cases—where the

physical system must be simulated repeatedly—the availability of reduced

models can greatly facilitate solution of the optimization problem, particu-

larly for real-time and/or large-scale applications. To be useful for optimiza-

tion purposes, the reduced model must provide an accurate representation

of the high-fidelity model over a wide range of parameters. In particular, dis-

cretization produces high-dimensional input spaces when the input parameters

represent continuous fields (such as initial conditions, boundary conditions,

distributed source terms, and heterogeneous material fields). Model reduction

for high-dimensional input spaces remains a challenging problem. Approaches

developed for dynamical systems, such as POD and Krylov-based methods,

have been applied in an optimization context [14–16]; however, the number
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of parameters in the optimization application was small. In recent work for

steady-state problems, methods are presented for constructing reduced mod-

els that are of guaranteed quality over a range of inputs via the use of error

estimates and adaptivity [17].

In this paper, we formulate the task of determining a projection basis as

a goal-oriented, model-constrained optimization problem. The mathematical

framework permits consideration of general dynamical systems with general

parametric variations and is applicable to both linear and nonlinear systems.

We propose an efficient solution strategy that borrows concepts from the POD

and employs recent methods for optimization of systems governed by PDEs to

make the approach tractable for large-scale problems. We begin with a descrip-

tion of the general dynamical system framework with parametric variations.

This is followed by a description of the goal-oriented basis optimization formu-

lation and the proposed model reduction methodology. The approach is then

demonstrated with two examples. The first is a simple linear model problem

that considers the unsteady two-dimensional heat equation with parametri-

cally varying boundary control inputs. The second is a more complicated ex-

ample that considers the two-dimensional linearized Euler equations governing

the unsteady motion of a subsonic blade row. Finally, we present conclusions

and directions for future research.

2 Dynamical System Framework

The standard LTI system framework is defined by (1)–(3). In this section,

we present the more general case that includes parametric variation in the

system. An overview of the existing POD method of snapshots, a commonly
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used approach to define the reduced basis, is described.

2.1 Parametric input variations

We consider a finite set of instantiations of the governing equations (1)–(3)

that could arise from variations in the coefficient matrices M and K, the input

f , or the initial state u0. For example, where (1)–(3) represent a spatially

discretized PDE, these variations stem from changes in the domain shape,

boundary conditions, coefficients, initial conditions, or distributed sources of

the underlying PDEs. The general dynamical system for S different instances

is thus written

Mku̇k + Kkuk = fk, k = 1, . . . , S, (8)

uk(0) = uk
0 k = 1, . . . , S, (9)

gk = Ckuk, k = 1, . . . , S, (10)

where the superscript k denotes the kth instance of the system, with corre-

sponding state uk(t) and output gk(t).

Using the projection framework described in the previous section, a reduced-

order model of (8)–(10) is obtained as

M̂kα̇k + K̂kαk = f̂k, k = 1, . . . , S, (11)

ĝk = Ĉkαk, k = 1, . . . , S, (12)

M̂kαk
0 = ΦT Mkuk

0, k = 1, . . . , S, (13)

where M̂k = ΦT MkΦ, K̂k = ΦT KkΦ, f̂k = ΦT fk, and Ĉk = CkΦ.
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2.2 Proper orthogonal decomposition

POD is a widely used approach to determine the reduced basis Φ. POD can

be applied efficiently to large systems using the method of snapshots [12] as

follows. Consider the collection of “snapshots”, uk(tj), j = 1, . . . , T, k =

1, . . . , S, where uk(tj) ∈ IRN is the solution of the governing equations (8)

at time tj for parameter instance k. T time instants are considered for each

parameter instance, yielding a total of ST snapshots. We define the snapshot

matrix U ∈ IRN×ST as

U =
[
u1(t1) u1(t2) · · · u1(tT ) u2(t1) · · · · · · uS(tT )

]
, (14)

and we will refer to the ith column of U as the ith snapshot, denoted by Ui.

The POD basis vectors are chosen to be the orthonormal set that solves the

optimization problem [18]

φ = arg max
ϕ

〈|(u, ϕ)|2〉
(ϕ, ϕ)

, (15)

where (u, φ) denotes the scalar product of the basis vector with the field u(t)

evaluated over the domain, and 〈 〉 represents a time-averaging operation. In

the case of the discrete snapshots contained in U , (15) is maximized when the

m basis vectors are chosen to be the first m left singular vectors of U . For

a fixed basis size, the POD basis therefore minimizes the error between the

original snapshots and their representation in the reduced space defined by

E =
S∑

k=1

T∑

j=1

[
uk(tj)− ũk(tj)

]T [
uk(tj)− ũk(tj)

]
, (16)
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where ũk(tj) = ΦΦT uk(tj). This error is equal to the sum of the singular values

corresponding to those singular vectors not included in the basis,

E =
ST∑

i=m+1

σi, (17)

where σi is the ith singular value of U .

The POD is an optimal basis in the sense that it minimizes the data re-

construction error given by (16); however, it is important to note that this

optimality applies only to the representation of a known state solution uk(tj)

in the reduced space, i.e. ũ is computed as ũk(tj) = ΦΦT uk(tj), not by solu-

tion of the reduced model (ũ 6= û). Therefore, the error expression does not

apply to the resulting POD reduced-order model (5). In particular, the error

expression yields no rigorous information regarding the accuracy of the solu-

tion of the reduced model and thus whether û is a good approximation of u.

Moreover, the POD basis does not account for the system outputs, although

methods to augment the standard approach have been proposed that use ad-

joint information [19,20]. In addition, because no information regarding the

governing equations is included in the POD process, the POD basis does not

properly reflect the fact that the snapshots uk(tj) are associated with different

parametric instances of the system.

In the following section we present an alternative method to determine the

reduced-space basis. This method seeks to minimize an error similar in form

to (16). However, we will improve upon the POD, first, by minimizing the

error in the outputs (as opposed to states) and, second, by imposing addi-

tional constraints that ûk(t) should result from satisfying the reduced-order

governing equations for each parameter instance k.
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3 Optimized Reduced-Order Basis

3.1 Constrained optimization formulation for projection basis

We pose the problem of selecting the basis Φ as a goal-oriented optimiza-

tion problem that seeks to minimize the difference between the full-space and

reduced-order output solution over a selected set of inputs and the interval

(0, tf ), subject to satisfying the underlying governing equations. The problem

of determining the optimal basis, Φ ∈ IRN×m, can be written as

min
Φ,α

G =
1

2

S∑

k=1

tf∫

0

(
gk − ĝk

)T (
gk − ĝk

)
dt +

β

2

m∑

j=1

(
1− φT

j φj

)2

+
β

2

m∑
i,j=1
i6=j

(
φT

i φj

)2
, (18)

subject to

ΦT MkΦα̇k + ΦT KkΦαk = ΦT fk, k = 1, . . . , S, (19)

ΦT MkΦαk
0 = ΦT Mkuk

0, k = 1, . . . , S, (20)

ĝk = CkΦαk, k = 1, . . . , S. (21)

In the case of a linear relationship between outputs and state as in (10), the

objective function can be written

G =
1

2

S∑

k=1

tf∫

0

(
uk − ûk

)T
Hk

(
uk − ûk

)
dt +

β

2

m∑

j=1

(
1− φT

j φj

)2

+
β

2

m∑
i,j=1
i6=j

(
φT

i φj

)2
, (22)

where Hk = CkT Ck can be interpreted as a weighting matrix that defines the

states relevant to the specified output. While the first term in the objective

function (22) has similarities with that minimized by the POD, given by (16),
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there are two important distinctions to note. First, the goal-oriented nature

of the formulation (22) focuses on reduction of the error for a particular out-

put functional rather than for the general state vector. Second, through the

constraints (19)–(21), the optimization approach requires satisfaction of the

reduced-order governing equations to determine û. The error minimized by

the optimization approach is thus tied rigorously to the reduced-order model,

whereas the POD is based purely on snapshot data. In both cases, however,

the definition of the error is limited to a discrete set of observations.

The second and third terms in (22) are regularization terms that penalize the

deviation of the basis vectors from an orthonormal set, with β as a regulariza-

tion parameter. This regularization acts only in the null space of the projected

Hessian matrix of the first term of (22). Therefore, the reduced output approx-

imation, ĝ, is unaffected by the regularization term, yet the conditioning of the

optimization problem is improved. Note, however, that there remains a null

space of the projected Hessian matrix that admits arbitrary rotations of the

basis vectors; the optimization method chosen to solve (18)–(21) should there-

fore be tolerant of singular projected Hessian matrices. It is also important

to note that the optimization problem (18)–(21) is nonlinear and nonconvex;

therefore, there is no guarantee that a purely local optimization method will

converge to the global optimum. Therefore, generating the initial guess is very

important; strategies to address this issue will be discussed in the next section.

3.2 Optimality conditions and the reduced gradient

The optimality conditions for the system (18)–(21) can be derived by defining

the Lagrangian functional
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L (Φ, αk, λk, µk) =
1

2

S∑

k=1

tf∫

0

(
uk − Φαk

)T
Hk

(
uk − Φαk

)
dt

+
β

2

m∑

j=1

(
1− φT

j φj

)2
+

β

2

m∑
i,j=1
i6=j

(
φT

i φj

)2

+
S∑

k=1

tf∫

0

λkT
(
ΦT MkΦα̇k + ΦT KkΦαk − ΦT fk

)
dt

+
S∑

k=1

µkT
(
ΦT MkΦαk

0 − ΦT Mkuk
0

)
, (23)

where λk = λk(t) ∈ IRm and µk ∈ IRm are Lagrange multipliers (also known

as adjoint state variables) that respectively enforce the state ODE system and

initial conditions for the kth sample. The optimality system can be derived

by taking variations of the Lagrangian with respect to the adjoint, state, and

basis vector variables.

Setting the first variation of the Lagrangian with respect to λk to zero and

arguing that the variation of λk is arbitrary in (0, tf ), and setting the derivative

of the Lagrangian with respect to µk to zero, simply recovers the state equation

and initial conditions (19)–(20).

Setting the first variation of the Lagrangian with respect to the αk to zero,

and arguing that the variation of αk is arbitrary in (0, tf ), at t = 0, and at

t = tf , yields the adjoint equation, final condition and definition of µ

−ΦT MkΦλ̇k + ΦT KkT Φλk = ΦT Hk
(
uk − Φαk

)
, k = 1, . . . , S, (24)

λk(tf ) = 0, k = 1, . . . , S, (25)

µk = λk(0), k = 1, . . . , S. (26)

Note that, without loss of generality, M is assumed to be a symmetric matrix.

Taking the derivative of the Lagrangian functional with respect to the basis
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vector variables Φ yields the following matrix equation,

δLΦ =
S∑

k=1

tf∫

0

Hk
(
Φαk − uk

)
αkT dt + βΦ

[
diag(φT

i φi − 2) + ΦT Φ
]

+
S∑

k=1

tf∫

0

[MkΦ
(
λkα̇kT + α̇kλkT

)
+ KkT ΦλkαkT + KkΦαk dt

+
S∑

k=1

MkΦµkαT
0 +

S∑

k=1

Mk
(
Φαk

0 − uk
0

)
µkT = 0. (27)

The combined system (19)–(20), (24)–(26), and (27) represents the first-order

Karush-Kuhn-Tucker optimality conditions for the optimization problem (18)–

(21).

3.3 Solution of the optimization problem

To solve the constrained optimization problem (18)–(21), we choose to solve

an equivalent unconstrained optimization problem in the Φ variables by elim-

inating the state variables αk and state equations (19). That is, we replace

minφ,α G(α, φ) with minφ G̃(α(φ), φ), where the dependence of α on φ is im-

plicit through the state equations (19)–(20).

We solve this unconstrained optimization problem by a trust-region inexact-

Newton conjugate-gradient method. That is, we use the conjugate gradient

(CG) method to solve the linear system of equations arising at each New-

ton step and globalize by a trust region scheme (see, for example, [21]). We

terminate CG when any of the three following conditions is satisfied: (1) a

negative curvature direction is encountered; (2) the norm of the residual of

the Newton system is brought down to a sufficiently small value relative to

the norm of the gradient; or (3) the Newton step iterate exits the trust region.
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This method combines the rapid locally-quadratic convergence rate proper-

ties of Newton’s method, the effectiveness of trust region globalization for

treating ill-conditioned problems, and the Eisenstat-Walker idea of preventing

oversolving [22].

The gradient of the unconstrained function Ĝ with respect to φ, as required

by Newton’s method, can be computed efficiently by an adjoint method. The

gradient is given by δLΦ when the αk satisfy the state equations and (λk, µk)

satisfy the adjoint equations. The procedure to compute the gradient can

therefore be summarized as follows. First, solve the state equations (19)–(20)

to determine αk(t). Second, solve the adjoint equations (24)–(26) to determine

λk(t) and µk. Finally, use the computed αk, λk, and µk in (27) to determine

the gradient. The Hessian-vector product as required by CG is computed on-

the-fly; because it is a directional derivative of the gradient its computation

similarly involves solution of state-like and adjoint-like equations. Therefore,

the optimization algorithm requires solution of a pair of state and adjoint

systems at each CG iteration. Note that the state and adjoint equation each

consist of S uncoupled ODE systems, each corresponding to once instance

of the parameter. For more details on Newton-Krylov methods for solution

of simulation-constrained optimization problems and the associated computa-

tional cost, see [23].

3.4 Basis computation

The formulation defined by equations (18)–(21) provides a mathematical def-

inition of the desired optimal basis; however, in practice this optimization

problem may not be tractable for large-scale problems. First, we may not be

14



able to afford storage of the entire time history for the full model, which leads

us to adopt a snapshot-based approach. As in the POD, accurate numerical ap-

proximation of the time integrals in (18) can be replaced by summation over a

more coarsely sampled subset of time instants. Our method therefore requires

a priori computation of a set of high-fidelity solutions over a pre-determined

set of time instants and input parameter values.

Second, even with this simplification, the number of optimization variables is

equal to mN — the desired number of basis functions multiplied by the length

of each basis vector — where for many applications N ≥ O(106). Therefore,

it will be assumed that each basis vector can be represented as a linear com-

bination of snapshots,

φj =
ST∑

i=1

γj
i Ui j = 1, . . . , m, (28)

where the coefficients γj
i are the variables in the modified optimization prob-

lem. This approximation reduces the number of optimization variables from

mN to mST ; for large-scale applications, typically ST ¿ N . As a conse-

quence, neither the gradient computation nor the optimization step compu-

tation (which dominate the cost of an optimization iteration) scale with the

full system size N . Approximating the basis vectors as a linear combination

of snapshots is motivated by the singular value decomposition (SVD) theory

underlying the POD, for which the relation (28) is exact (this is equivalent to

solving the inner versus the outer SVD problem).

Equation (28) can be written in matrix form as

Φ = UΓ, (29)
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where γj
i is the ijth element of Γ ∈ IRST×m. Gradients of the objective function

with respect to Γ are related simply to gradients with respect to Φ by

∂L
∂Γ

= UT ∂L
∂Φ

. (30)

The modified optimization formulation offers no guarantees of convexity and

the choice of initial guess for the basis is thus very important. In this paper,

we present two possible strategies. The first is to use the POD basis as an

initial starting point. Since a snapshot set is required anyway, the additional

cost of computing the POD basis is small. A second strategy is to employ

continuation on the basis dimension. In this approach, the initial guess for

the case of m basis vectors is chosen to be the solution of the optimization

problem for m − 1 basis vectors plus an arbitrary mth vector. This iterative

procedure can be initialized at any value m ≥ 1 with the POD basis vectors

as an initial guess on the first iteration.

4 Results

Results are presented for two examples. The first example is a simple heat con-

duction model problem of moderate dimension that permits detailed assess-

ment of the optimized basis methodology. The second example is a large-scale

CFD problem that clearly demonstrates the advantages of the new method

over the POD.
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4.1 Heat Conduction Example

Results are presented for a simple model problem that considers the two-

dimensional time-dependent heat equation with boundary temperature inputs.

The initial-boundary value problem is given by

∂ū

∂t
− κ∇2ū = 0 in Ω, (31)

ū = ūc on Γc, (32)

ū = 0 on ΓD, (33)

∂ū

∂n
= 0 on ΓN , (34)

ū = ū0 in Ω for t = 0, (35)

where ū(x, y, t) is the temperature field defined on the domain Ω, κ is the ther-

mal diffusivity, ūc(x, y) is the boundary control function (which is assumed to

be constant in time) applied on the boundary Γc, ΓD and ΓN are Dirichlet and

Neumann boundaries, respectively, and ū0(x, y) is the given initial tempera-

ture field. The output of interest is the temperature over a specified sub-region

of the domain.

Spatial discretization is by linear triangular finite elements, yielding a dynami-

cal system of the form (8)–(10), where uk(t) represents the spatially discretized

temperature field corresponding to forcing input fk, and gk(t) contains those

elements of uk that lie within the specified region of interest. Figure 1 shows

the problem domain Ω and corresponding mesh that was used. Results are

presented for a discretization containing N = 480 temperature unknowns.

The specified initial condition is u = 0 at t = 0, and time integration is by

implicit Euler with a constant time step over the time interval (0, tf ). Note

that the adjoint equation is marched backward in time. The boundary con-
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Fig. 1. Problem domain and boundary conditions for heat conduction example:

Neumann on right side, Dirichlet on all other boundaries.

trol is applied on Γc = {(0, y) : 0 ≤ y ≤ 3}, i.e., Dirichlet control on the

left boundary of the domain. A Neumann boundary condition is specified on

ΓN = {(3, y) : 1.5 ≤ y ≤ 3}, and a homogeneous Dirichlet condition is imposed

on the remaining part of the boundary, ΓD.

Snapshots were generated by solving the system under different boundary

forcing conditions. The forcing was generated by applying a temperature dis-

tribution along the boundary Γc. For the results presented here, the forc-

ing functions considered were parameterized by sinusoidal distributions with

varying spatial frequency. Snapshots were generated over S = 5 instances of

the control parameter forcing with T = 20 time instants for each parame-

ter instance. Using the optimization formulation (18)–(21), we seek the m

basis functions that minimize the error defined by (18) while satisfying the

reduced-order state equations for each control instance. The basis functions

are assumed to be a linear combination of available snapshots; hence there

are mST = 100m basis function variables in the optimization problem. The

state and adjoint equations each consist of S = 5 uncoupled ODE systems of

dimension m.
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4.1.1 Optimized basis performance

For the first set of results, the output of interest is defined to be the temper-

ature over a strip of the domain in the region 0.5 < x < 1.0, 0.5 < y < 2.5,

yielding an output vector of size Q = 47. Figure 2 shows values of the resulting

objective function (22), i.e. the error in the outputs, for bases ranging in size

from m = 1 to m = 10. Figure 2 also shows the values of (22) for the POD

bases over this range of m. It can be seen clearly that the optimized basis

outperforms the POD in all cases, particularly when m is small.

In order to provide a quantitative metric by which to judge the performance

of the optimized basis, balanced truncation was applied to this problem. The

problem was converted to standard LTI form by considering each parametric

forcing function as an independent input. Figure 2 plots values of (22) for

truncated balanced models of size m = 1 through m = 10. It can be seen

that in most cases the optimized basis provides a substantial improvement

over POD when both are compared to the results of balanced truncation. It

is also important to note that balanced truncation uses both a left and a

right projection basis, and thus has twice as many degrees of freedom as the

goal-oriented optimized basis.

4.1.2 Comparison with POD

A significant advantage of the goal-oriented approach is that the basis can be

optimized with respect to a particular output functional, whereas the POD

seeks to minimize the reconstruction error over all states. Several different

output definitions were considered in order to gain insight into the optimized

basis results.
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Fig. 2. The output error between reduced and full-order models (22) versus num-

ber of modes for the goal-oriented optimized basis, the POD basis, and balanced

truncation applied to the heat conduction example.

If the output considered is to minimize the error of state prediction over the

entire domain, that is, Hk = 1 in (22), then the goal-oriented approach seeks

to minimize the same error as the POD. However, it is important to note

again the difference in the representation of the term ũj, which for POD

is computed directly from the known solution uj, i.e. ũj = ΦΦT uj. In this

sense the POD is a purely data-based method that does not account for the

underlying governing equations. In contrast, our method computes ûj in (22)

by requiring the solution to satisfy the governing equations in the reduced-

order space.

Results for this case are shown in the first row of Table 1. Using the POD ba-

sis as an initial guess, the optimizer makes little improvement in the objective

function. As shown in Table 1, the reduction in the error is just 1%. For differ-

ent values of S, T and m, the POD basis is found to be almost optimal with
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respect to state reconstruction error for this example. Due to the symmetry

properties of the system (M and K are symmetric matrices), any congruent

basis transformation, such as the POD, is guaranteed to preserve the stability

of the system. Thus we expect that the POD should perform well on this heat

conduction example. As the results show, the additional error from solution

of the governing equations in the reduced space is not significant in this case.

As the next example will show, in more complicated problems the optimized

basis can provide an advantage over the POD even for full state reconstruc-

tion, particularly in the case of non-symmetric systems for which the POD

basis can routinely produce unstable reduced-order models.

Table 1 shows the results for other outputs corresponding to various speci-

fied output regions (and thus different weightings H in the objective function

(22)). Note that the POD basis is computed in the standard way and thus is

insensitive to the choice of output functional. The values in the column Gpod

represent the standard POD basis evaluated using the criterion defined by

(22) for each different instance of H (i.e. the metric Gpod is case-dependent).

It can be seen that by targeting an output functional, the goal-oriented basis

can yield substantial improvements in errors over the POD basis. It should be

emphasized that our method does not simply “ignore” states that lie outside of

the region of interest, since ûj is computed by solving the reduced-order equa-

tions over the entire domain. Therefore the basis must represent all states –

but the optimization formulation allows the basis energy to be focused appro-

priately to achieve the desired objective. One might draw conceptual parallels

between this approach and goal-oriented a posteriori error estimates to drive

grid adaptivity.

Figure 3 shows the output errors in the case of an output functional defined
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Table 1

Comparison of optimization results for the heat conduction example. The objective

function given by (22) is evaluated for the optimized basis (Gopt) and the POD basis

(Gpod).

Minimize prediction error over S T m Gopt Gpod

All states 5 20 5 28.9829 29.2762

x = 0.625, y = 0.625 5 20 5 2.9038e-3 0.01066

0.5 < x < 1, 0.5 < y < 1 5 20 5 0.01282 0.1932

0.5 < x < 1, 0.5 < y < 2.5 5 20 5 0.5555 0.8062

over the region 0.5 < x < 1, 0.5 < y < 1. Each plot in the figure corresponds

to one of the grid points that lie within the region of interest (for clarity, just

four of the nine points are shown). The first T = 20 snapshots correspond

to the first instance of control forcing, the second T = 20 correspond to the

second instance, and so on. The figure shows that for almost every snapshot

in the ensemble, the optimized basis results in a more accurate prediction of

the temperature at the point of interest. In many cases, the error is reduced

by almost an order of magnitude.

The reduced output errors shown in Figure 3 come at a cost. Figure 4 shows

the norm of the errors computed over the entire domain for each snapshot. In

order to reduce the errors at the specified points, the optimized basis yields

less accurate predictions for other states. However, it is again important to

note that this trade-off in accuracy is done in a systematic way using both

the governing equations and the defined output functional. According to the

optimization result, the larger errors observed in other areas of the domain
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Fig. 3. Error in temperature prediction for each snapshot using POD and opti-

mized basis. The optimized basis was selected to minimize the error over the region

0.5 < x < 1, 0.5 < y < 1. Errors are shown for four of the nine points contained

within this region.

are compatible with the task of reducing the error in the region of interest.

4.2 Subsonic Rotor Blade Example

The second example considers forced response of a subsonic rotor blade that

moves in unsteady rigid motion. The flow is modeled using the two-dimensional

Euler equations written at the blade mid-section. In this case the governing

PDEs are given by

∂w

∂t
+∇ · F(w) = 0, (36)

where w(x, y, t) is the conservative state vector,
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Fig. 4. Norm of the error in temperature prediction over the entire domain for each

snapshot using POD and optimized basis. The optimized basis was selected so as

to minimize the error over the region 0.5 < x < 1, 0.5 < y < 1.

w = (ρ, ρu, ρv, ρE)T , (37)

and F = (F x, F y) is the inviscid Euler flux,

F x =
(
ρu, ρu2 + P, ρuv, ρuH

)T
,

F y =
(
ρv, ρuv, ρv2 + P, ρvH

)T
. (38)

In the above equations, ρ is the density, u and v are respectively the x−
and y−component of velocity, E is the total energy, P is the pressure, and

H = E + P/ρ is the total enthalpy. The equation of state is the ideal gas law

P = (γ − 1)
[
ρE − 1

2
ρ

(
u2 + v2

)]
, (39)

where γ is the ratio of specific heats.

The geometry of the blade is shown in Figure 5 along with the unstructured
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Fig. 5. Geometry and CFD mesh for a single blade passage.

grid for a single blade passage, which contains 4028 triangular elements. The

Euler equations (36) are discretized in space with a discontinuous Galerkin

(DG) method, as described in [24]. To solve the forced response problem of

interest here, the steady-state solution is first obtained by solving the dis-

cretized nonlinear system of equations. For the case considered here, the in-

coming steady-state flow has a Mach number of M = 0.113 and a flow angle of

β = 59◦. Flow tangency boundary conditions are applied on the blade surfaces.

Since the rotor is cyclically symmetric, the steady flow in each blade passage is

the same and the steady-state solution can be computed on a computational

domain that describes just a single blade passage. Periodic boundary condi-

tions are applied on the upper and lower boundaries of the grid to represent

the effects of neighboring blade passages.

A linearized model is derived for unsteady flow computations by assuming that

the unsteady flow is a small deviation from steady state. The details of the

unsteady DG method are given in Bui-Thanh et al. [25]. Linearization of the
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unsteady Euler equations about the steady state yields a linear time-invariant

system of the form (1)–(3), where the state vector, u(t), contains the unknown

perturbation flow quantities (density, Cartesian momentum components and

energy). For the DG formulation, the states are the coefficients corresponding

to each nodal finite element shape function. Using linear elements, there are

12 degrees of freedom per element, giving a total state-space size of N = 48336

per blade passage. For the problem considered here, the forcing input, f(t),

describes the unsteady motion of the blade, which in this case is assumed to

be rigid plunging motion (vertical motion with no rotation). The output of

interest, g(t), is the unsteady lift force generated on the blade. The initial

perturbation flow is given by u0 = 0.

Using the linearized Euler equations reduces the complexity and computa-

tional time of unsteady calculations considerably. In particular, in the lin-

earized setting, unsteady computations can be done on a single blade passage

in the frequency domain, using symmetry arguments and complex periodic-

ity conditions to account for the effects of neighboring blade rows. However,

the model for a single blade passage has dimension N = 48336, and solution

of the linearized equations can be too costly for many applications, such as

aeroelastic analyses, which require coupling of a fluid dynamic and structural

model, and analysis of the effects of blade mistuning, which is the case when

all blades in the rotor are not identical. When mistuning exists, symmetry can

no longer be exploited in the frequency domain and unsteady computations

must be carried out on the full rotor, which for this example has 56 blades. The

goal is therefore to create a reduced-order model that accurately represents

the dynamic relationship between blade motion and lift force.

Snapshots were taken by computing the response of the blade to a pulse input
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in plunging motion. For this input, the blade vertical position as a function of

time is given by

h(t) = h̄e−g(t−t0)2 , (40)

where the parameters h̄ = 1, g = 0.02, and t0 = 40 were chosen based on

the range of motions that are expected in practice, and all quantities are

non-dimensionalized with the blade chord as a reference length and the inlet

speed of sound as a reference velocity. The unsteady simulation was performed

with a timestep of ∆t = 0.1 from t = 0 to tf = 200. A set of POD basis

vectors was computed from this collection of 2000 snapshots. POD reduced-

order models were then obtained by projecting the linearized Euler equations

onto the subspace spanned by the POD basis vectors, for various basis sizes.

Although the POD is very commonly used for fluid dynamic applications such

as this one, an important limitation is highlighted by the results shown in

Table 2. The table shows the value of the cost functional defined by (18) for

each of the POD-based reduced-order models (note that in this case there

is no variation of parameters, i.e. S = 1). Using the pulse input, the POD

yields unstable models, and thus cost functional values approaching infinity,

for bases of size 1 through 10. Even though the POD basis is optimal in the

sense that it provides the most efficient representation of the given snapshot

set, the results in Table 2 emphasize that this optimality is not related to the

quality of the resulting reduced-order model. For this example, the POD basis

provides satisfactory models if a larger number of states is used (for example,

the error with m = 11 states is considered to be acceptable). Modification

of the snapshot set might yield better POD-based reduced models. A set of

POD-based reduced models was also created using a step input to generate
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the snapshots. In this case, the POD-based reduced models were again found

to be unstable for most choices of the basis size. Improvements to the POD-

based models could possibly be achieved by further ad-hoc modification to the

snapshot set.

The goal-oriented, model-constrained optimization reduction methodology was

applied to this example for a similar range of basis sizes evaluated with the

POD. In each case, a continuation in the parameter m was used to initialize

the optimization. The set of 2000 snapshots was first reduced to a set of 19

vectors using SVD. Then, as described by (28), we seek the optimal basis that

is a linear combination of these vectors. This compression greatly reduces the

size of the optimization problem without a significant loss of information, since

in this case 19 vectors are sufficient to represent the information contained in

the snapshot set. The objective function (18) is defined over the 2000 solutions

used to generate the snapshots.

Figure 6 shows the values of the cost functional (18) versus the number of

modes, using the optimized basis vectors. The plot does not show a com-

parison with the POD-based models, since those models are all unstable for

this range of basis functions and the corresponding cost functional values are

extremely large. It can be seen that, by attempting to reduce the difference

between full-order and model-constrained reduced-order outputs, the opti-

mization approach not only yields a stable reduced model, but also provides

very accurate response over the specified range of behavior. The reduced-order

output matches the full-order output very accurately with a low number of

states. For example, comparing the results in Figure 6 with those in Table 2,

it can be seen that the accuracy of the 7th-order optimized reduced model is

comparable to that obtained with an 11th-order POD model.
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Table 2

The objective function given by (22) for POD-based reduced-order models generated

using a pulse plunge displacement input for the blade example.

Number of POD basis vectors Gpod

1 Unstable

2 Unstable

3 Unstable

4 Unstable

5 Unstable

6 Unstable

7 Unstable

8 Unstable

9 Unstable

10 Unstable

11 3.78e-09

12 2.16e-10

13 6.08e-11

14 6.58e-12

Figure 7 shows simulation results for a pulse with h̄ = 1, g = 0.02, and

t0 = 40 (i.e. the same parameters used to generate the reduced model). With

just m = 3 states in the reduced model, there is a small discrepancy between
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Fig. 6. Cost functional values versus number of modes using the optimized basis

vectors for the blade example.

the full-order and reduced-order outputs. With m = 8 reduced states, the

results are indistinguishable. Figure 8 shows the eigenvalues of the unstable

POD reduced model with eight basis vectors and its stabilized counterpart

computed using the optimized basis. It can be seen that the spectra of the

models differ widely.

5 Conclusions

The goal-oriented, model-constrained optimization approach presented here

provides a general framework for construction of reduced models, and is par-

ticularly applicable to optimal design, optimal control and inverse problems.

The optimization approach provides significant advantages over the POD by

targeting the projection basis to output functionals of interest, by providing

a framework in which to treat multiple parameter instances, and by incor-
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porating the reduced-order governing equations as constraints in the basis

derivation.
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